Social Influence Analysis in Large-scale Networks

作者:Jie Tang

年份:2009

期刊:KDD

研究内容:区分不同angle(topic)上的社会影响,量化影响的大小。 propose Topical Affinity Propagation (TAP) to model the topic-level social influence on large networks.

主要思想

在主题层面(topic level)上利用亲和力传播(affinity propagation)来进行社会影响鉴定。

  • TAP provides topical influence graphs that quantitatively measure the influence on a fine-grain level;
  • The influence graphs from TAP can be used to support other applications such as finding representative nodes or constructing the influential subgraphs;
  • An efficient distributed learning algorithm is developed for TAP based on the Map-Reduce framework in order to scale to real large networks.

数据

网络和节点下的主题分布。一个作者共现网络,一个引用网络,一个film-director-actor-writer网络

结论

相较于文本相似度有两个优势1.可以分析来年各个节点互相影响的差异。2.可以计算整个网络中影响力最强的节点。

借鉴意义:可对社交网络中用户节点转化成向量,然后计算用户节点与相连节点的相似性,作为亲密度度量的手段。

Social Influence Analysis in Large-scale Networks

-------------End. Thank u for reading.-------------
0%